FUNCTIONS AND INVERSE FUNCTIONS

A FUNCTION is a relationship or a rule between the input (x-values/domain) and the output (y-values/range)

<table>
<thead>
<tr>
<th>Input-value</th>
<th>output-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>-2</td>
<td>2</td>
</tr>
</tbody>
</table>

The INVERSE FUNCTION is a rule that reverses the input and output values of a function.

If \(f \) represents a function, then \(f^{-1} \) is the inverse function.

<table>
<thead>
<tr>
<th>Input-value</th>
<th>output-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>-2</td>
<td>-3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input-value</th>
<th>output-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-3</td>
<td>-2</td>
</tr>
</tbody>
</table>

Functions can be \textbf{on – to – one} or \textbf{many – to – one} relations.

\textbf{NOTE:} if a relation is \textbf{one – to – many}, then it is \textbf{NOT} a function.
HOW TO DETERMINE WHETHER THE GRAPH IS A FUNCTION OR NOT

i. **Vertical – line test:**

The **vertical – line test** is used to determine whether a graph is a function or not a function. To determine whether a graph is a function, draw a vertical line parallel to the y-axis or perpendicular to the x-axis. If the line intersects the graph once then graph is a function. If the line intersects the graph more than once then the relation is not a function of x. Because functions are single-valued relations and a particular x-value is mapped onto one and only one y-value.

![Vertical line test](image1)

Function

![Vertical line test](image2)

not a function (one to many relation)

TEST FOR ONE –TO– ONE FUNCTION

ii. **Horizontal – line test**

The **horizontal – line test** is used to determine whether a function is a one-to-one function. To determine whether a graph is one –to– one function, draw a horizontal line parallel to the x-axis or perpendicular to the y-axis. If the line intersects the graph once the graph is one –to– one function. If the line intersects the graph more than once then the relation is **not a** one –to– one function.

![Horizontal line test](image3)

one-to-one function

![Horizontal line test](image4)

many-to-one function
MATHEMATICS GRADE 12

INVERSE FUNCTIONS

ACTIVITY 1 (50 marks)

1. State whether the following relations are functions or not. If the graph is a function, state whether the function is one-to-one or many-to-one.

1.1 \{(-2; -7); (0; -1); (1; 2); (2; 6)\}

1.2 \{(-2; 6); (-1; 3); (0; 2); (1; 3); (2; 6)\}

1.3 \{(-2; 16); (4; 1); (4; 6); (3; 7)\}

1.4

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>5</td>
</tr>
<tr>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

1.5

1.6

[Graphs and tables as shown in the document]
2. Sketch the following functions:

2.1 \(f(x) = -x + 1 \)
2.2 \(g(x) = -x^2 + 4 \)
2.3 \(h(x) = \left(\frac{1}{3} \right)^x - 1 \)
2.4 \(k(x) = \sqrt{x} + 1 \)
2.5 \(j(x) = \frac{2}{x+1} + 2 \)

3. For the graphs sketched in question 2 above, state the domain and Range

4. For each of the functions given in question 2 above, write the equation of the new function formed after a translation of 1 unit right and 2 units down.

5. Explain why \(h(x) \) is a function and state with a reason(s) why it is a 1-to-1 function.

TOTAL: 50

METHOD ON HOW TO DETERMINE THE EQUATION OF THE INVERSE

- First interchange/swap \(x \) and \(y \),
- then make \(y \) the subject of the formula

Example1: Linear function

Determine the inverse of \(f(x) = 2x + 3 \)

Solution

\[y = 2x + 3 \]

\[x = 2y + 3 \] Interchange \(x \) and \(y \) this is also the inverse but is in the form \(x = \ldots \)

\[x - 3 = 2y \]

\[\frac{x-3}{2} = y \] this is in the form \(f^{-1}(x) = \frac{x-3}{2} \) or \(y = \ldots \)
Sketch the graphs of \(f(x) = 2x + 3 \) and \(f^{-1}(x) = \frac{x-3}{2} \) on the same set of axes.

Both \(f \) and \(f^{-1} \) intersect at a point \((-3; -3)\). The line \(y = x \) is the axis of symmetry.

<table>
<thead>
<tr>
<th>Domain</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>(x \in \mathbb{R})</td>
</tr>
<tr>
<td>(f^{-1}(x))</td>
<td>(x \in \mathbb{R})</td>
</tr>
</tbody>
</table>

- Both \(f \) and \(f^{-1} \) have the same domain and range but the \(y \)-intercept of \(f \) is now the \(x \)-intercept of \(f^{-1} \).
- \(f(x) \) and \(f^{-1}(x) \) are both one-to-one functions.

Example 2: Quadratic function

Determine the inverse of \(f(x) = 2x^2 \)

Solution:
\[
\begin{align*}
y &= 2x^2 \\
x &= 2y^2 & \text{Interchange } x \text{ and } y \text{ this is also the inverse but is in the form } x = \cdots \\
\frac{x}{2} &= y^2 \\
\pm \sqrt{\frac{x}{2}} &= y \\
\pm \sqrt{\frac{x}{2}} &= y & \text{this is in the form } f^{-1}(x) = \pm \sqrt{\frac{x}{2}} \text{ or } y = \cdots
\end{align*}
\]
Sketch the graphs of \(f(x) = 2x^2 \) and \(f^{-1}(x) = \pm \frac{x}{2} \) on the same set of axes.

Both \(f \) and \(f^{-1} \) intersect at two points. The line \(y = x \) is the axis of symmetry.

<table>
<thead>
<tr>
<th></th>
<th>Domain</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>(x \in \mathbb{R})</td>
<td>(y \geq 0)</td>
</tr>
<tr>
<td>(f^{-1}(x))</td>
<td>(x \geq 0)</td>
<td>(y \in \mathbb{R})</td>
</tr>
</tbody>
</table>

- From the sketch above, the domain and range of \(f(x) \) have interchanged forming range and domain respectively of \(f^{-1}(x) \)
- But \(f^{-1}(x) \), the inverse of \(f(x) \), is NOT a function because according to the vertical line test the graph of \(f^{-1}(x) \) is cut twice by the vertical line.
- \(f^{-1}(x) \) is a one-to-many relation.

If the domain of \(f(x) \) is restricted to \(x \geq 0 \) or \(x \leq 0 \), then the inverse will also be a function.

Restriction 1

For \(f(x) \)

Domain: \(x \geq 0 \) \(y \geq 0 \)

For \(f^{-1}(x) \)

Domain: \(x \geq 0 \) \(y \geq 0 \)
Example 3: Exponential function

Determine the inverse of \(f(x) = 2^x \)

Solution:

\[y = 2^x \]
\[x = 2^y \]

Interchange \(x \) and \(y \) this is also the inverse but is in the form \(x = \ldots \)

\[\log_2 x = \log_2 2^y \]

introduce logarithm to the base of 2 on both sides of the equation

\[\log_2 x = y \log_2 2 \]

but \(\log_a a = 1 \) \(\Rightarrow \log_2 2 = 1 \)

\[\log_2 x = y \]

this is in the form \(f^{-1}(x) = \log_2 x \) or \(y = \ldots \)

Sketch graphs of \(f(x) = 2^x \) and \(f^{-1}(x) = \log_2 x \) on the same set of axes.
Both f and f^{-1} are one-to-one functions. The line $y = x$ is the axis of symmetry.

<table>
<thead>
<tr>
<th></th>
<th>Domain</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>$x \in \mathbb{R}$</td>
<td>$y \geq 0$</td>
</tr>
<tr>
<td>$f^{-1}(x)$</td>
<td>$x \geq 0$</td>
<td>$y \in \mathbb{R}$</td>
</tr>
</tbody>
</table>

Example 4: Exponential function

Determine the inverse of $f(x) = \left(\frac{1}{2}\right)^x$

Solution:

$y = \left(\frac{1}{2}\right)^x \quad x = 2^y$ Interchange x and y this is also the inverse but is in the form $x = \ldots$

$\log_2 x = \log_2 \left(\frac{1}{2}\right)^y$ introduce logarithm to the base of $\frac{1}{2}$ on both sides of the equation

$\log_2 x = y \log_2 \frac{1}{2}$ but $\log_a a = 1 \Rightarrow \log_2 \frac{1}{2} = 1$

$\log_2 x = y$

$\log_2 x = y$ this is in the form $f^{-1}(x) = \log_2 x$ or $y = \ldots$

Sketch graphs of $f(x) = \left(\frac{1}{2}\right)^x$ and $f^{-1}(x) = \log_2 x$ on the same set of axes.

Both f and f^{-1} are one-to-one functions. The line $y = x$ is the axis of symmetry.

<table>
<thead>
<tr>
<th></th>
<th>Domain</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>$x \in \mathbb{R}$</td>
<td>$y \geq 0$</td>
</tr>
<tr>
<td>$f^{-1}(x)$</td>
<td>$x \geq 0$</td>
<td>$y \in \mathbb{R}$</td>
</tr>
</tbody>
</table>
ACTIVITY 2 (112 marks)

1. Determine the inverse for each of the functions below: (2 marks each)

1.1 \(f(x) = \frac{1}{2}x - 3 \)

1.2 \(g(x) = 5x + 1 \)

1.3 \(h(x) = x^2 + 1 \)

1.4 \(j(x) = -2x^2 + 2 \)

1.5 \(k(x) = 3^x + 1 \)

1.6 \(l(x) = \left(\frac{1}{2}\right)^x - 2 \)

1.7 \(m(x) = 2^{-x} - 2 \)

1.8 \(n(x) = \frac{1}{x+1} - 2 \)

2. For each of the functions in Question 1 above, sketch both the function and the inverse on the same set of axes. Clearly show the asymptotes where necessary. (4 marks each function/4 marks each inverse)

3. State the domain and range for each of the functions and their inverses sketched in Question 2 above. (2 marks each function/ 2 marks each inverse)

<table>
<thead>
<tr>
<th>Function</th>
<th>Inverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain: Range:</td>
<td>Domain: Range:</td>
</tr>
</tbody>
</table>

TOTAL: 112
QUESTION 1

Consider the functions \(f(x) = 2 \times 3^x - 2 \), \(g(x) = -2x + 1 \) and \(h(x) = -(x + 2)^2 + 5 \).

1.1 Solve for \(x \) if \(f(x) = 0 \). (3)

1.2 For which values of \(x \) and \(y \) is \(g(x) = h(x) \)? (5)

1.3 Draw \(f \), \(g \) and \(h \) on the same set of axes, clearly indicating the intercepts with the axis, turning point(s), asymptotes and symmetry lines. (9)

[17]

QUESTION 2

Given: \(f(x) = \log_a x \)

2.1 Determine the value of \(a \), if the point \((27; 3)\) lies on \(f \). (2)

2.2 Determine the equation of \(f^{-1} \) in the form \(y = \ldots \) (2)

2.3 Draw a neat sketch of \(f^{-1} \), showing all intercepts with the axes. Indicate at least one other point on your graph. (2)

2.4 Write down the range of \(h \) if: \(h(x) = f^{-1}(x) + 1 \). (1)

[7]

QUESTION 3

Given: \(h(x) = \frac{12}{x-4} + 6 \) for \(x > 0 \)

3.1 Draw a neat sketch graph of \(h \). Show all intercepts with the axes and asymptotes. (4)

3.2 Write down the equation of \(k \) if \(k \) is the reflection of \(h \) about the \(x \)-axis. (3)

[7]
QUESTION 4

4.1 Sketched below are the functions: \(f(x) = 2x^2 - 6x - 20 \) and \(g(x) = -2x + k \).

Determine:

4.1.1 the coordinates of turning point D. \((2) \)
4.1.2 the coordinates of A and B. \((3) \)
4.1.3 the value of \(k \). \((2) \)
4.1.4 the values of \(p \) if \(2x^2 - 6x + p = 0 \) has no real roots. \((2) \)
4.1.5 for which values of \(x \) is \(f(x) \cdot g(x) \leq 0 \). \((2) \)
4.1.6 the value of \(t \) if \(y = -2x + t \) is a tangent to \(f \). \((4) \)

4.2 Consider the following two functions: \(p(x) = x^2 + 1 \) and \(r(x) = x^2 + 2x \).

4.2.1 How will you shift \(p \) to become the function \(r \)? \((3) \)
4.2.2 Write down the range of \(p \). \((1) \)

TOTAL: 50
ACTIVITY 4 (50 marks)

QUESTION 1

The graphs of \(f(x) = \frac{a}{x + p} + q \), \(g(x) = b \left(\frac{1}{2} \right)^x \) and \(k(x) = mx + c \) are drawn below.

The asymptotes of the hyperbola intersect at \(L(-1 ; 8) \). \(R(-2 ; 12) \) is a common point of \(f \) and \(g \). \(k \) is the line of symmetry of \(f \).

1.1 Determine the values of \(a, p, q, b, m \) and \(c \).

1.2 Determine the equation of the inverse of \(g(x) \) in the form \(y = \ldots \).

1.3 Draw the graph of the inverse of \(\frac{g(x)}{3} \). Clearly indicate the coordinates of the \(x \)-intercept.
QUESTION 2

The graphs of \(f(x) = \frac{4}{x - 3} + 5 \) and \(g(x) = \left(\frac{1}{2}\right)^x + \frac{5}{2} \) are drawn below.

\(P(1 ; 3) \) is a common point of the two graphs. \(O \) is the origin.
The asymptotes of the two graphs are indicated by dotted lines. The two asymptotes intersect at \(K(x ; y) \). \(S \) is the \(y \)-intercept of \(f \) and \(T \) is the \(y \)-intercept of \(g \).

Use the information provided to answer the questions:

2.1 Determine the length of:
 2.1.1 RK (1)
 2.1.2 KM (1)

2.2 For which values or \(x \) is \(g(x) \geq f(x) \) where \(x > 0 \)? (2)

2.3 For which values of \(x \) is \(f(x) > g(x) \) where \(x > 0 \)? (3)

2.4 Determine the length of \(HF \) if \(OH = 5 \) units long. (4)

2.5 Explain why \(g \) is a decreasing function. (2)

2.6 Determine the equation of the axis of symmetry of the hyperbola. (2)

2.7 Write down the domain of \(f \). (2)

2.8 Determine the solution of the following equation where \(x > 0 \):
 \[4^{-1}(2)^{-x} - 0.625 = (x - 3)^{-1} \]
 NB: show ALL your working detail and give a reason for your final answer. (5)
QUESTION 3

3.1 Let \(f(x) = -3x^2 \).

3.1.1 How must the domain of \(f \) be restricted such that the inverse of \(f \) is a function again? (2)

3.1.2 Draw a sketch graph of the inverse of \(f \). (2)

3.1.3 Why is the inverse of \(f \) not a function? (1)

3.2 The graphs of \(f^{-1}(x) = \pm \sqrt[2]{a \over x} \) and \(g^{-1}(x) = \log_b x \) are drawn below.

R(25 ; 2) is a common point of the two graphs.

3.2.1 Determine the values of \(a \) and \(b \). (5)

3.2.2 For which values of \(x \) is \(g^{-1} \leq 2 \)? (2)

3.2.3 Determine the equation of the function \(p \) if the graph of \(p \) is obtained by shifting the graph of \(f \) two units to the left. (2)

TOTAL: 50
ACTIVITY 5 (51 marks)

QUESTION 1
Below are the graphs of \(f(x) = -(x + 2)^2 + 6 \) and a straight line \(g \).

- A and B are the \(x \)-intercepts of \(f \) and E is the turning point of \(f \).
- C is the \(y \)-intercept of both \(f \) and \(g \).
- The \(x \)-intercept of \(g \) is D. DE is parallel to the \(y \)-axis.

1.1 Write down the coordinates of E. (2)
1.2 Calculate the coordinates of A. (3)
1.3 M is the reflection of C in the axis of symmetry of \(f \). Write down the coordinates of M. (3)
1.4 Determine the equations of \(g \) in the form \(y = mx + c \). (3)
1.5 Write down the equation of \(g^{-1} \) in the form \(y = \ldots \). (3)
1.6 For which values of \(x \) will \(x(f(x)) \leq 0? \) (4)
QUESTION 2

In the diagram below, the graph of \(f(x) = ax^2 \) is drawn in the interval \(x \leq 0 \). The graph of \(f^{-1} \) is also drawn. \(P(-7; -14) \) is a point on \(f \) and \(R \) is a point \(f^{-1} \).

2.1 Is \(f^{-1} \) a function? Motivate your answer.

2.2 If \(R \) is the reflection of \(P \) in the line \(y = x \), write down the coordinates of \(R \).

2.3 Calculate the value of \(a \).

2.4 Write down the equation of \(f^{-1} \) in the form \(y = \ldots \)

\[8 \]
QUESTION 3
In the diagram below, the graphs of \(f(x) = m^x + k \) and \(g(x) = \frac{-4}{x+2} - 1 \) are drawn.
The two graphs intersect at \(A(0; -3) \). The point \(C(2; 5) \) lies on \(f \) and \(B(-6; 0) \) is the \(x \) - intercept of \(g \).

3.1 Determine:

3.1.1 the equation of \(f \). (4)

3.1.2 the equation of \(h \), the axis of symmetry of \(g \) with a negative gradient. (3)

3.2 Describe the transformation that \(g \) has to undergo to form the graph of

\[p(x) = \frac{-4}{x+4} + 4 \]

(2)

3.3 For which value of \(x \) is: \(h(x) \leq g(x) \)? (5)
QUESTION 4

Sketched below are the graphs of $h(x) = \left(\frac{1}{2}\right)^x + q$ and $f(x) = \log_2 x$.

Graph f and the asymptote of h intersect at $B(A; p)$.

4.1 Write down the coordinates of A, the $x-intercept$ of f.

4.2 Determine the domain of f.

4.3 Determine the equation of f^{-1} in the form $y = ..$

4.4 Sketch the graph of f^{-1}. Clearly label the intercept(s) with the axes as well as the coordinates of any one other point on the graph.

4.5 Determine the equation of the asymptote of h.

4.6 Describe, in words, the transformation of h to f^{-1}.

[11]

Total: 51